[an error occurred while processing this directive] ������� 2017, 36(3) 941-946 DOI:   10.3969/j.issn.1004-5589.2017.03.027  ISSN: 1004-5589 CN: 22-1111/P

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
��������
��չ����
������Ϣ
Supporting info
PDF(505KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���·���
���������Ϣ
���Ĺؼ����������
��-p�任
Ƶ�ʷֽⷨ
F-K�任
�߷ֱ������������任
���������������
��Ӣΰ
���߽�
����
PubMed
Article by Yan Y
Article by Wang Z
Article by Han F
�沨��ģʽƵɢ������ȡ�⾫�ȶԱ��о�
��Ӣΰ, ���߽�, ����
���ִ�ѧ����̽���ѧ�뼼��ѧԺ, ���� 130026
ժҪ�� ��Բ�ͬ������ȡ�沨��ģʽƵɢ���߾������⣬���߷ֱ������-p�任��Ƶ�ʷֽⷨ��F-K�任���߷ֱ������������任��High-Resolution Linear Radon Transform�����HRLRT������������͵���ģ�ͺϳ����ײ���¼����Ƶɢ�������񣬲���Ƶɢ�������ֵʰȡ��ģʽƵɢ���ߡ�Ϊ������������ģ�ͻ�ģʽƵɢ������ȡ���������Ľӽ��̶ȣ������˾����������ϵ���������۲��������۽���������߷ֱ������������任��ȡ��ģʽƵɢ���߾�����ߣ�������Ϊ11.167 8�����ϵ��Ϊ0.994 9��F-K�任��ȡ��ģʽƵɢ���߾�����ͣ�������Ϊ195.274�����ϵ��Ϊ0.515 2��
�ؼ����� ��-p�任   Ƶ�ʷֽⷨ   F-K�任   �߷ֱ������������任  
Comparative study on precision to extractive solution of surface wave base mode dispersion curve
YAN Ying-wei, WANG Zhe-jiang, HAN Fei
College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China
Abstract: For the problem of the precision of surface wave base mode dispersion curve extracted by different methods, tau-p transform, frequency decomposition, frequency-wavenumber transform and high-resolution linear Radon transform are adopted in this study to generate dispersive energy image of synthetic Rayleigh wave seismic record of six-layer incremental geophysical model. The extractive solution of base mode dispersion curve is determined by picking the maximum dispersive energy. The mean square error and correlation coefficient is introduced in order to quantitatively evaluate the proximity between the extractive solution and analytical solution of base mode dispersion curve. The evaluative result shows that the precision of the base mode dispersion curve extracted by high-resolution linear Radon transform is the highest, with mean square error of 11.167 8 and correlation coefficient of 0.994 9. The precision of the base mode dispersion curve extracted by frequency-wavenumber transform is the lowest, with mean square error of 195.274 and correlation coefficient of 0.515 2.
Keywords: tau-p transform   frequency decomposition   frequency-wavenumber transform   high-resolution linear Radon transform  
�ո����� 2016-11-02 �޻����� 2017-05-19 ����淢������  
DOI: 10.3969/j.issn.1004-5589.2017.03.027
������Ŀ:

ͨѶ����: ���߽�(1968),��,����,��Ҫ���¹��̵����������̵��������沨��̽�ȷ�����о�.E-mail:zhejiang@jlu.edu.cn
���߼��:
����Email: zhejiang@jlu.edu.cn

�ο����ף�
[1] Rayleigh. On waves propagated along the plane surface of an elastic solid[J]. Proceedings of the London Mathematical Society, 1885, 17:4-11.
[2] Babuska V, Cara M.Seismic anistotropy in the Earth[M].Netherlands:Kluwer Academic Publishers, 1991:1-215.
[3] ��Сƽ,�Ƽ���,�ܺ���.���̿�̽����̬�����沨���������۵�̽��[J].��������ѧ��,1993,36(1):96-105. GUAN Xiao-ping, HUANG Jia-zheng, ZHOU Hong-qiu.Probe the interpretation theory of steady-state Rayleigh wave method in engineering exploration[J].Chinese Journal of Geophysics, 1993, 36(1):96-105.
[4] �޽���.һ�ָĽ���ȫ���Ż��㷨�������沨Ƶɢ���߷����е�Ӧ��[J].��������ѧ��,2004,47(3):521-527. CUI Jian-wen.An improved global optimization method and its application to the inversion of surface wave dispersion curves[J]. Chinese Journal of Geophysics, 2004, 47(3):521-527.
[5] Miller R D, Xia J, Park C B, et al. Multichannel analysis of surface waves to map bedrock[J].Leading Edge, 1999, 18(12):1392-1396.
[6] Xia J, Miller R D, Park C B, et al. Comparing shear-wave velocity profiles from multichannel analysis of surface wave with borehole measurements[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(3):181-190.
[7] Tian G, Steeples D W, Xia J, et al.Useful resorting in surface wave method with the autojuggie[J].Geophysics, 2003, 68(6):1906-1918.
[8] Xia J, Miller R D, Park C B, et al.Utilization of high frequency Rayleigh waves in near-surface geophysics[J]. Leading Edge, 2004, 23(8):753-759.
[9] McMechan G A, Yedlin M J.Analysis of dispersive waves by wave field transformation[J].Geophysics, 1981, 46(6):869-874.
[10] Song Y Y, Castagna J P, Black R A, et al.Sensitivity of near-surface shear-wave velocity determination from Rayleigh and Love waves[C]//Technical Program with Biographies, SEG, 59th Annual Meeting, Dallas, TX, 1989:509-512.
[11] Xia J,Miller R D, Park C B.Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave[J].Geophysics, 1999, 64:691-700.
[12] Park C B, Miller R D, Xia J.Multichannel analysis of surface waves(MASW)[J].Geophysics,1999, 64:800-808.
[13] Calderón-Macias C, Luke B.Improved parameterization to invert Rayleigh-wave data for shallow profiles containing stiff inclusions[J].Geophysics, 2007, 72(1):U1-U10.
[14] Luo Y, Xia J, Liu J, et al.Joint inversion of high-frequency surface waves with fundamental and higher modes[J].Journal of Applied Geophysics, 2007, 62(4):375-384.
[15] ��ο�,������.�����Ŵ��㷨��Levenberg-Marquardt�㷨����΢���ٶ�ģ��[J].�������,2016,35(4):1127-1132. SUN Jia-jun, ZENG Xiao-xian.Structuring velocity model of microseism based on genetic algorithm and Levenberg-Marquardt algorithm[J].Global Geology, 2016, 35(4):1127-1132.
[16] ������,�����,��꿵�.����ֵ�ֽ�(SVD)��λ������ȥ���е�Ӧ��[J].�������,2016,35(4):1119-1126. XING Cong-cong, WU Yan-gang, ZHAO Xin, et al.Application of singular value decomposition(SVD) denoising in potential field data[J].Global Geology, 2016, 35(4):1119-1126.
[17] Xia J, Xu Y, Miller R D. Generating image of dispersive energy by frequency decomposition and slant stacking[J].Pure and Applied Geophysics, 2007, 164(5):941-956.
[18] Song X H, Li D Y, Gu H M, et al.Insights into performance of pattern search algorithm for high-frequency surface wave analysis[J].Computer & Geosciences, 2009, 35(8):1603-1619.
[19] Luo Y, Xia J, Miller R D, et al.Rayleigh-wave dispersive energy imaging using a high-resolution linear Radon transform[J].Pure and Applied Geophysics, 2008, 165(5):903-922.
[20] Gabriels P, Snieder R, Nolet G.In situ measurements of shear-wave velocity in sediments with higher-mode Rayleigh waves[J].Geophysical Prospecting, 1987, 35(2):187-196.
[21] ����.��-p�任��Ӧ��[M].����:ʯ�͹�ҵ������,1993:100-110. WU Lü.��au-p transform and its application[M].Beijing:Petroleum Industry Press, 1993:100-110.
[22] Coruh C.Stretched automatic amplitude adjustment of seismic data[J].Geophysics, 1985, 50(2):252-256.
[23] Trad D O, Ulrych T J, Sacchi M D.Accurate interpolation with high-resolution time-variant Radon transforms[J].Geophysics, 2002, 67(2):644-656.
[24] ���ѻ�,������. ��״�����������沨��Ƶɢ�о�[J]. ��������ҵ��ѧѧ��,2001,33(5):577-581. FAN You-hua, LIU Jia-qi.Research on the dispersion Rayleigh waves in multilayered media[J].Journal of Harbin Institute of Technology, 2001, 33(5):577-581.
�������������
1������, ������, ����.����Radon�����������β�Ԥ�ⷽ��[J]. �������, 2018,37(1): 267-275
2����齨, ������, ������, ����.������Ԫ�㷨�ĵ���̽�߾�����Ԫ����ֵģ��[J]. �������, 2018,37(1): 276-281
3��κ����, ����, ������, �ű�, ��ϲ��.�����˹���Ⱥ�㷨��SCA��Ч���۵ľ��кᲨ�ٶ�Ԥ�ⷽ��[J]. �������, 2018,37(1): 282-288
4���ϻ���, ����, �����, ����, κ����.˫��Radon�任��������[J]. �������, 2017,36(2): 579-587
5������, ������, ��׿, ����, �޼���.���������С���˼�ȨĿ�꺯��ȫ���η���[J]. �������, 2017,36(2): 588-594
6����˼��, ������, �ڳ�ϼ.��ʱƫ��˫���������������������[J]. �������, 2017,36(2): 602-608
7������, ������, Ҷ��, ��ǿ.����F-K���Curvelet-��ֵ�˲�����ȥ��Ļ�����ݷ��뷽��[J]. �������, 2017,36(2): 609-615
8������, ������, ��齨, Ҷ��, ����.�����������С���˷��ݵ�б�����ݹ�ѹ�Ʒ���[J]. �������, 2017,36(2): 595-601
9����ƽ, ������.������Ԫ���ĸ�������𤵯�Խ��ʵ��𲨳�ģ��ͷ���[J]. �������, 2017,36(1): 255-265
10������, ������, ��齨, ����, Ҷ��, ���.����F-K�򽻲����˫��ϳɼ����о�[J]. �������, 2017,36(1): 266-273
11����͢, ����, �����, �ܳ�, �Ǻ���.�����˹���Ⱥ�㷨��Pearson���ϵ�����ѷ�����ʶ��[J]. �������, 2017,36(1): 293-298

Copyright by �������