[an error occurred while processing this directive] ������� 2017, 36(3) 671-681 DOI:   10.3969/j.issn.1004-5589.2017.03.003  ISSN: 1004-5589 CN: 22-1111/P

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
��������
��չ����
������Ϣ
Supporting info
PDF(756KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���·���
���������Ϣ
���Ĺؼ����������
Ǽ��������
�켹ɽ
����ѧ
����ĸ������
����
���������������
����
����ʤ
PubMed
Article by Zhang L
Article by Dong Y
����Ǽ���������켹ɽ��������ĸ�����ҳ��򼰵�������
����1, ����ʤ2
1. ���º˹�ҵ���Ŷ�һһ������޹�˾, ���� 710024;
2. ���ִ�ѧ�����ѧѧԺ, ���� 130061
ժҪ�� ��Ǽ���������켹ɽ����һ�׶������������з��ְ���ĸ�����ң�����״���뵽�Գ���-�������С����߶��������ϸ����ʯѧ�͵���ѧ�о����ص���������򼰵������塣����ѧ������ʾ������ĸ�����Ҿ��и߹踻����ص㣬��������-�Ƽ��Ի����ң�����Th��Sr��Ԫ�أ�����Nb��Ta��Zr��Ti��Ԫ�أ�ϡ��Ԫ��������ʯ��׼�����ͼ��ʾU�����ߣ���Eu�쳣���ԡ�����ĸ�����ҵ���ʯѧ����������ѧ������Ԫ�ر�ֵ���������챳���������ͻ��������ơ���CaO/Na2O����Al2O3/TiO2����ȫ���ʯ�����¶ȣ�TZr����˵�������Ϊ�������������λ�Ĺ����У���½��Ե������ĸ������ʯ�ڵ��¡����������£�����ĸ��ˮ�����γɡ��켹ɽ����ĸ�����ҵķ��ֱ�����������˹�����Ѿ��պϣ�Ǽ���ؿ��Ǽ�ϵؿ鷢����ײ���Խӡ�
�ؼ����� Ǽ��������   �켹ɽ   ����ѧ   ����ĸ������   ����  
Petrogenesis and geological implication of Hongji Mountain muscovite granite in central and western Qiangtang, Tibet
ZHANG Le1, DONG Yong-sheng2
1. Geological Party No. 211, Sino Shaanxi Nuclear Industry Group, Xi'an 710024, China;
2. College of Earth Sciences, Jilin University, Changchun 130061, China
Abstract: The muscovite granite has been found in Permian ophiolite melange, which intruded into gabbro and diabase dikes as vein in Hongji Mountain, central and western Qiangtang. The authors studied the petrology and geochemistry characteristics, with an emphasis on its petrogenesis and geological implication. Geochemically, the muscovite granite is silica-rich in composition, with high content of alkali (Na2O+K2O). It's peraluminous granite that belongs to the calc-alkaline series and is characterized by the enrichment of Th, Sr and the depletion of Nb, Ta, Zr, Ti. The chondrite-normalized REE distribution patterns are characterized by U-shaped pattern with intensely positive Eu anomaly. The petrology, geochemistry, element ratios and tectonic setting of muscovite granite are similar to obduction-type granites. The muscovite granite has low CaO/Na2O, high Al2O3/TiO2 and low zircon saturation temperatures(TZr), indicating it was probably generated by dehydration-melting of muscovite-rich pelite in a condition of low temperature fluid on the continental margin, while the ophiolite melange obducted onto continental crust. The discovery of Hongji Mountain muscovite granite indicates that the Paleo-Tethys had been closed, and north Qiangtang collided and converged with south Qiangtang.
Keywords: central and western Qiangtang   Hongji Mountain   geochemistry   muscovite granite   Tibet  
�ո����� 2017-01-12 �޻����� 2017-07-28 ����淢������  
DOI: 10.3969/j.issn.1004-5589.2017.03.003
������Ŀ:

������Ȼ��ѧ������Ŀ��41372066������.

ͨѶ����: ����ʤ(1968),��,����,��ʿ����ʦ,���±�����ʯѧ�о�.E-mail:dongys@jlu.edu.cn
���߼��:
����Email: dongys@jlu.edu.cn

�ο����ף�
[1] ������,���׻�.�������еĻ�������ʯ���������빹������[J].�����ѧ��չ,2003,18(3):392-397. LI Wu-xian, LI Xian-hua. Rock types and tectonic significance of the granitioids rocks within ophiolites[J]. Advances in Earth Science, 2003, 18(3):392-397.
[2] Coleman R G, Peterman Z E. Oceanic plagiogranite[J]. Journal of Geophysical Research, 2012, 80(8):1099-1108.
[3] Pedersen R B, Malpas J. The origin of oceanic plagiogranites from the Karmoy Ophiolite, western Norway[J].Contributions to Mineralogy & Petrology, 1984, 88(1/2):36-52.
[4] Flagler P A, Spray J G, Nakamura K, et al. Generation of plagiogranite by amphibolite anatexis in oceanic shear zones[J]. Geology, 1991, 19(1):70-73.
[5] Sorenson S S, Grossman J N. Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone:Catalina Schist, southern California[J]. Geochimica Et Cosmochimica Acta, 1989, 53(12):2177-3155.
[6] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294):662-665.
[7] Cox J, Searle M, Pedersen R. The petrogenesis of leucogranitic dykes intruding the northern Semail ophiolite, United Arab Emirates:field relationships, geochemistry and Sr/Nd isotope systematics[J]. Contributions to Mineralogy & Petrology, 1999, 137(3):267-287.
[8] Li W X, Li X H, Li Z X, et al. Obduction-type granites within the NE Jiangxi ophiolite:implications for the final amalgamation between the Yangtze and Cathaysia Blocks[J]. Gondwana Research, 2008, 13(3):288-301.
[9] ���,����ʤ,�����,��.��ظ�ԭǼ����ѹ���ʴ����������乹������[J].����ͨ��,2008,27(1):27-35. LI Cai, DONG Yong-sheng, ZHAI Qing-guo, et al. High-pressure metamorphic belt in Qiangtang, Qinghai-Tibet Plateau, and its tectonic significance[J]. Geological Bulletin of China, 2008, 27(1):27-35.
[10] ¦�,����ʤ,������,��.����Ǽ�����Һ����������è��ɽ����Ľ��弰���̻����Ҵ��ij����嶨[J].����ͨ��,2014,33(9):1391-1399. LOU Hao, DONG Yong-sheng, ZHANG Xiu-zheng, et al. Disintegration of Early Devonian Maoershan Formation and delineation of ophiolite melange in Xiangtaohu area of central Qiangtang, south Tibet[J]. Geological Bulletin of China, 2014, 33(9):1391-1399.
[11] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of minor elements[J]. Lithos, 1989, 22(4):247-263.
[12] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643.
[13] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. London:Geological Society Special Publications, 1989, 42(1):313-345.
[14] Skjerlie K P, Pedersen R B, Wennberg O P, et al. Volatile phase fuxed anatexis of sediments during Late Caledonian ophiolite obduction:evidence from the Sogneskollen Granitic Complex, West Norway[J]. Journal of the Geological Society, 2000, 157(6):1199-1213.
[15] Whitehead J, Dunning G R, Spray J G. U-Pb geochronology and origin of granitoid rocks in the Thetford Mines ophiolite, Canadian Appalachians[J]. Geological Society of America Bulletin, 2000, 112(6):915-928.
[16] Taylor S R, McLennan S M. The continental crust:its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks[J]. Journal of Geology, 1985, 94(4):632-633.
[17] Hofmann A W, Jochum K P, Seufert M, et al. Nb and Pb in oceanic basalts:new constraints on mantle evolution[J]. Earth and Planetary Science Letters, 1986, 79(1/2):33-45.
[18] ��Ф��,ë����,���岩,��.���ϸ��ɸ߷�ɽ�����ҳ���:�ʯU-Pb���ѧ������ѧԼ��[J].��ʯѧ��,2012,28(1):183-198. LI Xiao-long,MAO Jing-wen,CHENG Yan-bo, et al. Petrogenesis of the Gaofengshan granite in Gejiu area,Yunnan Province:zircon U-Pb dating and geochemical constraints[J]. Acta Petrologica Sinica, 2012, 28(1):183-198.
[19] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1):43-55.
[20] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956-983.
[21] Chappell B W, White A J R. Two contrasting granite types[J]. Pacific Geology, 1974, 8:173-174.
[22] Barbain B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3):605-626.
[23] Watson E B, Harrison T M. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64(2):295-304.
[24] ������,����,���,��.�ر���������ɫ�����Ҽ������ҵij���:�Ը�ԭ�����߽�ؿǼӺ���̺�¡��ʱ������Լ[J].��ѧͨ��,2012,57(2/3):153-168. ZHANG Li-yun, DING Lin, YANG Di, et al. Origin of middle Miocene leucogranites and rhyolites on the Tibetan Plateau:constraints on the timing of crustal thickening and uplift of its northern boundary[J]. Chinese Science Bulletin, 2012, 57(5):511-524.
[25] Lee S Y, Bames C G, Snoke A W, et al. Petrogenesis of Mesozoic, peraluminous granites in the Lamoille Canyon Area, Ruby Mountains, Nevada, USA[J]. Journal of Petrology, 2003, 44(4):713-732.
[26] ���.��ظ�ԭ��ľ��-˫��-���׽�����ϴ��о���ʮ��[J].��������,2008,54(1):105-119. LI Cai. A review on 20 Years' study of the Longmu Co-Shuanghu-Lancang River suture zone in Qinghai-Xizang (Tibet) Plateau[J]. Geological Review, 2008, 54(1):105-119.
[27] ������.��ľ��-˫��-���׽�����ʷ��¼:�����-�����͵�������:��ʿѧλ����[D].����:���ִ�ѧ,2013. WU Yan-wang. The evolution record of Longmuco-Shuanghu-Lancang ocean:Cambrian-Permian ophiolites:doctor's degree thesis[D]. Changchun:Jilin University, 2013.
[28] ���,����ʤ,�����,��.��ظ�ԭǼ���������������-�Ѿ��Գ��ҵ��ʯSHRIMP���꼰������[J].��ʯѧ��,2008,24(1):31-36. LI Cai, DONG Yong-sheng, ZHAI Qing-guo, et al. Discovery of Eopaleozole ophiolite in the Qiangtang of Tibet Plateau:evidence from SHRIMP U-Ph dating and its tectonic implications[J]. Acta Petrologica Sinica, 2008, 24(1):31-36.
[29] ����Զ,���,������,��.�ر�Ǽ���в�������������ҶѾ�����б�������ҵĵ���ѧ����[J].����ͨ��,2009,28(9):1297-1308. HU Pei-yuan, LI Cai, LI Lin-qing, et al. Geochemical characteristics of Early Palaeozoic plagioclase granite from ophiolitic cumulate in central Qiangtang, northern Tibet, China[J]. Geological Bulletin of China, 2009, 28(9):1297-1308.
[30] ������,���,����ʤ,��.�ر�Ǽ���в����κ�������������ҵ���ʯѧ����[J].����ͨ��,2009,28(9):1290-1296. WU Yan-wang, LI Cai, DONG Yong-sheng, et al. Petrological characteristics of Taoxinghu Early Paleozoic ophiolite in central Qiangtang, northern Tibet, China[J]. Geological Bulletin of China, 2009, 28(9):1290-1296.
[31] ����ȫ,�˹���,���,��.�ر�Ǽ���в����ɼ���ɽ��������Ѿ��Գ��ҵ��ʯSHRIMP U-Pb����:����ԭ-������˹����ݻ�[J].����ͨ��,2008,27(12):2045-2056. WANG Li-quan, PAN Gui-tang, LI Cai, et al. SHRIMP U-Pb zircon dating of Eopaleozoic cumulate in Guoganjianian Mt. from central Qiangtang area of northern Tibet:considering the evolvement of Proto-and Paleo-Tethys[J]. Geological Bulletion of China, 2008, 27(12):2045-2056.
[32] Zhai Q G, Jahn B M, Wang J, et al. The Carboniferous ophiolite in the middle of the Qiangtang terrane, northern Tibet:SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics[J]. Lithos, 2013, 168(3):186-199.
[33] �����,����,���,��.��ظ�ԭǼ���в��а��������ʶѾ��Գ����ʯSHRIMP���ѧ��Hfͬλ������[J].�й���ѧ:�����ѧ,2010,40(5):565-573. ZHAI Qing-guo, WANG Jun, LI Cai, et al. SHRIMP U-Pb dating and Hf isotopic analyses of Middle Ordovician metacumulate gabbro in central Qiangtang, northern Tibetan Plateau[J]. Science in China:Earth Sciences, 2010, 53(5):657-664.
[34] ��ͬ��,����Ծ,���,��.�ر�˫���Ŷ�迨һ��������������·������������������������������[J].����ͨ��,2006,25(12):1413-1418. ZHU Tong-xing, ZHANG Qi-yue, DONG Han, et al. Discovery of the Late Devonian and Late Permian radiolarian cherts in tectonic melanges in the Cedo Caka area, Shuanghu, northern Tibet, China[J]. Geological Bulletin of China, 2006, 25(12):1413-1418.
[35] ʩ����,����ʤ,������.�ر�Ǽ���в����ɼ���ɽб�������Ҷ��꼰��������[J].����ͨ��,2009,28(9):1236-1242. SHI Jian-rong, DONG Yong-sheng, WANG Sheng-yun. Dating and tectonic significance of plagiogranite from Guoganjianian Mountain, central Qiangtang, northern Tibet, China[J]. Geological Bulletin of China, 2009, 28(9):1236-1243.
[36] ����Զ,���,�ⳬ��,��.�ر�Ǽ���в����κ����������Ƴ�������:������˹���������֤��[J].��ʯѧ��,2013,29(12):4404-4414. HU Pei-yuan, LI Cai, XIE Chao-ming, et al. Albite granites in Taoxinghu ophiolite in central Qiangtang, Qinghai-Tibet Plateau, China:evidences of Paleo-Tethys oceanic crust subduction[J]. Acta Petrologica Sinica, 2013, 29(12):4404-4414.
[37] �����,���,����.�ر�Ǽ���в���ľ������ҵ���ʯѧ������ѧ����������pTt�켣[J].����ͨ��,2009,28(9):1207-1220. ZHAI Qing-guo, LI Cai, WANG Jun. Petrology, mineralogy and pTt path for the eclogite from central Qiangtang, northern Tibet, China[J]. Geological Bulletin of China, 2009, 28(9):1207-1220.
[38] ���,�����,����,��.��ظ�ԭǼ���в������Ar-Ar����[J].��ʯѧ��,2006,22(12):2843-2849. LI Cai, ZHAI Qing-guo, CHEN Wen, et al. Ar-Ar chronometry of the eclogite from central Qiangtnng area Qinghai-Tibet Plateau[J]. Acta Petrologica Sinica, 2006, 22(12):2843-3849.
[39] Li C, Zhai Q G, Dong Y S, et al. High-pressure eclogite-blueschist metamorphic belt and closure of paleo-Tethys ocean in central Qiangtang, Qinghai-Tibet plateau[J]. Journal of Earth Science, 2009, 20(2):209-218.
[40] ����ʤ,������,ʩ����,��.�ر�Ǽ���в���ѹ���ʴ���ʯ��ʯ����ĸƬ�ҵ���ʯѧ�ͱ�������[J].����ͨ��,2009,28(9):1201-1206. DONG Yong-sheng, ZHANG Xiu-zheng, SHI Jian-rong, et al. Petrology and metamorphism of garnet-muscovite schist from high pressure metamorphic belt in central Qiangtang, northern Tibet, China[J]. Geological Bulletin of China, 2009, 28(9):1201-1206.
[41] ������,����ʤ,ʩ����,��.Ǽ���в���ľ��-˫����ϴ���Ӳ��ʯ��ʯ����ĸƬ�ҵij�������[J].��ѧǰԵ,2010,17(1):93-103. ZHANG Xiu-zheng, DONG Yong-sheng, SHI Jian-rong, et al.Formation and significance of jadeite-garnetmica schist newly discovered in Longmu co-Shuanghu suture zone, central Qiangtang[J]. Earth Science Frontiers, 2010, 17(1):93-103.
[42] ������,����ʤ,���,��.Ǽ���в����������ҽ���Ĺ��챳�����������:�Ժ켹ɽ�������Һ�������Ϊ��[J].��ʯѧ��,2014,30(2):547-564. ZHANG Xiu-zheng, DONG Yong-sheng, LI Cai, et al. Tectonic setting and petrogenesis mechanism of Late Triassic magmatism in central Qiangtang, Tibetan Plateau:take the Xiangtaohu pluton in the Hongjishan region as an example[J]. Acta Petrologica Sinica, 2014, 30(2):547-564.
[43] ����Զ,���,���,��.��ظ�ԭǼ���в����ɼ���ɽһ���������������ҵ��������ʯ���꼰�乹������[J]. ����ͨ��,2010,29(12):1825-1832. HU Pei-yuan, LI Cai, YANG Han-tao, et al. Characteristic, zircon dating and tectonic significance of Late Triassic granite in the Guoganjianianshan area, central Qiangtang, Qinghai-Tibet Plateau, China[J]. Geological Bulletin of China, 2010, 29(12):1825-1832.
[44] ���,�����,����ʤ,��.��ظ�ԭǼ���в����ɼ���ɽ������ͳ��������Ľ���������[J].����ͨ��,2007,26(8):1003-1008. LI Cai, ZHAI Qing-guo, DONG Yong-sheng, et al. Establishment of the Upper Triassic Wanghuling Formation at Guoganjianian Mountain, central Qiangtang, Qinghai-Tibet Plateau, and its significance[J]. Geological Bul-letin of China, 2007, 26(8):1003-1008.
�������������
1�����Ķ�, ���, ����, ������, ֣����, ������, κС��.���˰��뱱������ս����������������������ѧ������ѧ����ع�������[J]. �������, 2018,37(1): 21-36
2���ΕD, ��ѧ��, ֣����, �ֲ�, ���׺�, �����.������������٪�޼ͻ�ɽ����ʯѧ��ͬλ�����ѧ�����ѧ����[J]. �������, 2018,37(1): 70-87
3���޲�, �ڽ齭, ����־, ��Ԫ��, ���Ǵ�, �ڽ�».�½�����ɽ�������������ɽ�ϲ����������ɽ�ҵ����ѧ������ѧ�����������[J]. �������, 2018,37(1): 88-104
4��֣��, ���Գ�, ������, ����.�����߼ұ���������ʯ����ĸƬ�ҵ���ѧ��������������[J]. �������, 2017,36(3): 785-795
5������, �ᄚ��, ����, ������, ���庣, �Ű���, �Կ�ǿ.С�˰��뱱´����ɽ��󴲸���Χ���ʯU-Pb���ѧ������ѧ����ʯ�������������[J]. �������, 2017,36(3): 806-825
6��������, ������, ������, ۬����, ����ʵ, ����, ������.������ر�Ʊ�������������Դ���л�����ѧ����[J]. �������, 2017,36(3): 889-902
7������ܰ, �����, ������, ��, ������, ����ΰ.Ǽ�������ӵ�������������SHRIMP�ʯU-Pb���ѧ����ʯ����ѧ[J]. �������, 2017,36(3): 691-700
8������Ȫ, �ű���.��׼����������ͼ����ĵ���ѧ���������컷��[J]. �������, 2017,36(3): 682-690
9�����ﲩ, ���Գ�, ����, ������.�������¼ҵ��������ڰ����ʯU-Pb���ꡢ����ѧ��������������[J]. �������, 2017,36(3): 796-805
10������, �����, ����, ����־.������ɽ�ӻ���-�����������ʯU-Pb���ѧ����ʯ����ѧ����[J]. �������, 2017,36(2): 441-451
11������, ۭ����, ������, ����, �∐��.�Ĵ���֦��������˫��ʽ��ɽ�ҵ���ѧ���������������[J]. �������, 2017,36(2): 452-459
12������, ������, ������, ����, ����.�������������ӽ�󴲻�ɽ��-�λ�ɽ�����ѧ������ѧ�͵�������[J]. �������, 2017,36(2): 460-473
13�������, �����, ���ͷ�, ����, ����, ������, ��־ӱ.���˰��뱱�λ���̨ͭǦп�������������ҵ���ʯ���򣺵���ѧ���ʯU-Pb���ѧ��Լ[J]. �������, 2017,36(2): 474-485
14���ν�, ��־��, ����, ��ϣ��, ���Ʊ�, ������.�����в������뱱���������ʯU-Pb���ꡢ����ѧ���������������[J]. �������, 2017,36(2): 391-401
15������ΰ, ���ʤ, ���庣, ������, ����, ������.���˰��뱱��˹ľ�Ƶ�����٪������״�������������ѧ������ѧ�����������[J]. �������, 2017,36(2): 402-412

Copyright by �������