[an error occurred while processing this directive] ������� 2018, 37(1) 316-326 DOI:   10.3969/j.issn.1004-5589.2018.01.032  ISSN: 1004-5589 CN: 22-1111/P

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
ң�С�������ʵ��
��չ����
������Ϣ
Supporting info
PDF(2584KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���·���
���������Ϣ
���Ĺؼ����������
ˮ��ʵ��
����ʯ
����ʯ
ת������
���������������
�ſ���
���
�Ͻ�
��ҫ��
������
�����D
ʩΰ��
PubMed
Article by Zhang J
Article by Li B
Article by Meng J
Article by Li Y
Article by Wang X
Article by Liu X
Article by Shi W
����ʯ����ʯ����ˮ��ʵ��ģ��
�ſ���1, ���1, �Ͻ�1,2, ��ҫ��1, ������3, �����D1,3, ʩΰ��4
1. ���ִ�ѧ�����ѧѧԺ, ���� 130061;
2. ������ʦ����ѧ�����ѧѧԺ, ������ 150025;
3. ���ִ�ѧ�޻��ϳ����Ʊ���ѧ�����ص�ʵ����, ���� 130012;
4. ����ʯ�ʹ�ѧ��ѧ����ѧԺ ʯ������Ȼ������ʡ�ص�ʵ����, ������ ���� 163318
ժҪ�� ������ʯΪ��ʼ���ϣ�ͨ��ˮ��ʵ��ģ���ڲ�ͬ�¶�ѹ������������ʯ������ʯ�����̡�����X���߷�ĩ���估X����ӫ����ס�������׺�ɨ��羵�ȷ�������Ʒ�Ŀ������ࡢ��ѧ�ɷ֡�����ṹ��΢����ò�Ƚ��з���������������������ʯ������ʯ��ת�����¶Ⱥ�ѹ�������Ŀ��ƣ��������¶Ⱥ�ѹ�������ߣ�����ʯ����ʯ����������ʯ-�������ɻ��-�������ɻ��-����ʯ��ת�����н���ת������ˮ��ʵ��ģ���������ʯ������ʯ��ת�����ܽ��ؽᾧ����Ϊ����ʵ���������������˽������ͼ����������е�����ʯ����ʯ�����̣�ͬʱΪ�о��ϲ����¶ϲ�������������ת�������ݶϲ��γ�ʱ�¶�ѹ�������ṩ����������
�ؼ����� ˮ��ʵ��   ����ʯ   ����ʯ   ת������  
Transformation of montmorillonite illitization based on hydrothermal experiments
ZHANG Jun-cheng1, LI Ben-xian1, MENG Jie1,2, LI Yao-zong1, WANG Xiao-feng3, LIU Xiao-yang1,3, SHI Wei-guang4
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. College of Geography Sciences, Harbin Normal University, Harbin 150023, China;
3. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China;
4. Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
Abstract: Montmorillonite was selected as the initial material to simulate the transformation process of montmorillonite into illite by hydrothermal experiments in different temperautres and pressures. The mineralogical and chemical evolution,crystal structure and morphology of the clay minerals were analyzed using X-ray powder diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The results showed that:�� the transformation process of montmorillonite illitization depends on the temperature and pressure;�� with the increasing of temperature and pressure,the transformation sequence was from montmorillonite to disordered I/S, ordered I/S, and to illite;�� the transformation process mainly involved dissolution and recrystallization mechanism. The experiment is helpful to the understanding of the transformation process of montmorillonite illitization under the condition of burial and very low-grade metamorphism, and provides basic parameters for the transformation of clay minerals contained in fault gouge during fault activity, as well as the temperature and pressure conditions for the inversion of fault formation.
Keywords: hydrothermal experiment   montmorillonite   illite   transformation sequence  
�ո����� 2017-11-13 �޻����� 2017-12-18 ����淢������  
DOI: 10.3969/j.issn.1004-5589.2018.01.032
������Ŀ:

���������ѧ����41502044��.

ͨѶ����: ���(1980-),��,������,��Ҫ���¹�����ʼ�����ѧ�о�.E-mail:lbxian@jlu.edu.cn
���߼��:
����Email: lbxian@jlu.edu.cn

�ο����ף�
[1] ����,����,����,��.��������ϲ�����ɽ������ɽ��������������ҵ���ʯѧ�����ѧ����[J].�������,2017,36(2):333-345. SUN Xiao, LIU Li, LIU Na, et al. Petrological and geochemical characteristics of mudstone from the 2nd and 3rd members of Qingshankou Formation near Hada Mountain in southern Songliao Basin[J].Global Geology,2017,36(2):333-345.
[2] ��־��,��ռƽ,����,��.���ɹ����������������������м�ҳ������ü���Դ������Ե�Ӱ��[J].�������,2016,35(4):1058-1065. ZHUO Zhi-bo, ZHU Zhan-ping, DING Ge,et al.Clastic diagenesis in Late Permian Linxi Formation in Linxi area,Inner Mongolia and its influence on physical properties[J].Global Geology,2016,35(4):1058-1065.
[3] Yamaguchi A, Sakaguchi A, Sakamoto T, et al. Progressive illitization in fault gouge caused by seismic slip propagation along a megasplay fault in the Nankai trough[J]. Geology, 2011, 39(11):995-998.
[4] Kubo T, Katayama I. Effect of temperature on the frictional behavior of smectite and illite[J]. Journal of Mineralogical & Petrological Sciences, 2015, 110(6):293-299.
[5] Tesei T, Lacroix B, Collettini C. Fault strength in thin-skinned tectonic wedges across the smectite-illite transition:constraints from friction experiments and critical tapers[J]. Geology, 2015, 43(10):923-926.
[6] Middleton A W, Uysal I T, Golding S D. Chemical and mineralogical characterisation of illite-smectite:implications for episodic tectonism and associated fluid flow, central Australia[J]. Geochimica et Cosmochimica Acta, 2015, 148(1):284-303.
[7] Sakaguchi A, Chester F, Curewitz D, et al. Seismic slip propagation to the updip end of plate boundary subduction interface faults:vitrinite reflectance geothermometry on integrated ocean drilling program NanTro SEIZE cores[J]. Geology, 2011, 39(4):395-398.
[8] Xie J L, Yang K G, Chang-Qian M A. The characteristics of Huayuan-Zhangjiajie fault belts and ESR dating of Wuling mountain, western Hunan[J]. Geological Journal of China Universities, 2006, 12(1):14-21.
[9] Pei J, Zhou Z, Dong S, et al. Magnetic evidence revealing frictional heating from fault rocks in granites[J]. Tectonophysics, 2014, 637(24):207-217.
[10] Ishikawa T, Tanimizu M, Nagaishi K, et al. Coseismic fluid-rock interactions at high temperatures in the Chelungpu fault[J].Nature Geoscience, 2008, 1(10):679-683.
[11] Ujiie K, Yamaguchi A, Taguchi S. Stretching of fluid inclusions in calcite as an indicator of frictional heating on faults[J]. Geology, 2008, 36(2):111-114.
[12] Kameda J, Ujiie K, Yamaguchi A, et al. Smectite to chlorite conversion by frictional heating along a subduction thrust[J]. Earth and Planetary Science Letters, 2011, 305(1):161-170.
[13] Saffer D M, Underwood M B, Mckiernan A W. Evaluation of factors controlling smectite transformation and fluid production in subduction zones:application to the Nankai trough[J]. Island Arc, 2010, 17(2):208-230.
[14] Nguyenthanh L, Herbert H, Kasbohm J, et al. Effects of chemical structure on the stability of smectites in short-term alteration experiments[J]. Clays & Clay Minerals, 2014, 62(5):425-446.
[15] Campo M D, Bauluz B, Nieto F, et al. SEM and TEM evidence of mixed-layer illite-smectite formed by dissolution crystallization processes in continental Paleogene sequences in northwestern Argentina[J]. Clay Minerals, 2016, 51(5):723-740.
[16] Meng J, Li B, Zhang J, et al. Patterns of clay minerals transformation in clay gouge, with examples from revers fault rocks in Devonina Niqiuhe Formation in the Dayangshu Basin[J]. Acta Geologica Sinica, 2017,91(1):59-60.
[17] Ji J, Browne P R L. Experiments, using natural thermal waters, on the illitization of interlayered illite-smectite and the crystallinity of illite[J]. Journal of Biochemistry, 1995, 98(4):949-962.
[18] Huang W L. An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer[J].Journal of the Neurological Sciences, 1993, 41(2):162-177.
[19] Tesei T, Lacroix B, Collettini C. Fault strength in thin-skinned tectonic wedges across the smectite-illite transition:constraints from friction experiments and critical tapers[J]. Geology, 2015, 43(10):923-926.
[20] �紺ʡ. X����������ٻ������������͵ķ���[J]. ����ѧ��, 1984,13(1):88-92. MIAO Chun-xing. A rapid approach to classifying the types of expandable soils by X-ray diffraction[J]. Acta Mineralogica Sinica, 1984,13(1):88-92.
[21] S'rodoń J. Precise identification of illite/smectite interstratifications by X-ray powder diffraction[J]. Clays & Clay Minerals, 1980, 28(6):401-411.
[22] Velde B. Pressure-temperature-composition of illite/smectite mixed-layer minerals:niger delta mudstones and other examples[J]. Clays & Clay Minerals, 1986, 34(4):435-441.
[23] ��˼��. �������ʯ-����ʯ�ļ��������������[J]. ����������˹����, 1990,10(5):23-29. HUANG Si-jing.Identification and diagenetic significance of interstratified illite-montmorillonite series[J]. Sedimentary Geology and Tethyan Geology, 1990,10(5):23-29.
[24] ������, �ζ���. ���������������̽����[M]. ����:ʯ�͹�ҵ������, 2016:58-63. ZHAO Xing-yuan,HE Dong-bo. Clay mineral and application in oil and gas exploration and development[M].Beijing:Petroleum Industry Press, 2016:58-63.
[25] ����, ��ͬ��, ��ӱ. ����ʯ�ľ��廯ѧʽ���������[J]. �˹�����ѧ��, 2008, 135(2):350-355. SUN Hong-juan, PENG Tong-jiang,LIU Ying. Calculation of crystal chemical formula of montmorillonite and classification[J]. Journal of Synthetic Crystals, 2008, 135(2):350-355.
[26] Hower J, Eslinger E V, Hower M E, et al. Mechanism of burial metamorphism of argillaceous sediment:1. mineralogical and chemical evidence[J]. Geological Society of America Bulletin, 1976, 87(5):725-737.
[27] �����. ճ�������о�����[M]. ����:��ѧ������, 1990:98-134. ZHANG Nai-xian. Research methods in clay minerals[M]. Beijing:Science Press, 1990:98-134.
[28] ����, ����. ��״�������ο����Ȼԭ����Ӧ��[M]. ����:��ѧ������, 2016:16-107. LI Guang-hui, JIANG Tao. The principle thermal activation and application in layered alumina silicate minerals[M]. Beijing:Science Press,2016:16-107.
[29] Srasra, �����. �������ʯ-����ʯճ����������Ͱ������û��ĺ�������о�[J]. ��ʯ�ͱ�ʯѧ��־, 1995,12(2):7-10. Srasra, XU Hong-zhong. The infrared spectroscopic study of the teplacement in tetrahedron and octahedron in illite/smectite interstratified clay minerals[J]. Journal of Gems & Gemmology, 1995,12(2):7-10.
[30] Chen Y, Furmann A, Mastalerz M, et al. Quantitative analysis of shales by KBr-FTIR and micro-FTIR[J]. Fuel, 2014, 116(1):538-549.
[31] ��Ĭ. ����ĺ������[M].����:��ѧ������, 1982:262-284. Farmer V C. The infrared spectra of minerals[M].Beijing:Science Press, 1982:262-284.
[32] ����¥, �ַ���. Cu-, Mg-����ʯ�������ˮ���о�[J]. ������ѧ��, 1992,20(5):463-469. WANG Wen-lou,LIN Feng-liang. An iverstigation of the adsorbed water in the interlayer of Mg-and Cu-montmorillonites[J]. Journal of the Chinese Ceramic Society, 1992,20(5):463-469.
[33] ����. ����������ѧ[M]. ����:�����ѧ������, 1989:89-103. WEN Lu. The infrared spectroscopy of minerals[M].Chongqing:Chongqing University Press, 1989:89-103.
[34] Ԭ����, ���Ļ�, �մ�Ȩ. ����ʯ����ͬ���û���IR��ESR�о�[J]. ����ѧ��, 1990,10(3):248-255. YUAN Wang-zhi, LI Wen-hui, TAO Da-quan. IR and ESR studies of isomorphous substitution of montmorillonite[J].Acta Mineralogica Sinica, 1990,10(3):248-255.
[35] ���귪, �, ����ï. ɨ��羵��ճ�������о��е�Ӧ��[J]. ���ʿ�ѧ, 1986,21(4):411-415. ZHANG Ru-fan, LI Kang,SUN Song-mao. The application of SEM for study of clay minerals[J]. Chinese Journal of Geology, 1986,21(4):411-415.
[36] ����. ����ʯ��΢�ṹ�����о�[M]. ����:��ѧ������, 2012:23-80. CHEN Tao. Study on microstructure characteristics of illite[M].Beijing:Science Press, 2012:23-80.
[37] �����, ���. ���¸�ѹ������ʯ��΢��������ѧ���ʵ��о�[J]. �������, 1992, 14(4):376-380. FENG Jin-jiang, LI Jian-guo. Micro-deformetion and mechanical properties of montmorillonite at high temperature and pressure[J]. Seismology and Geology, 1992, 14(4):376-380.
[38] ������, ���ݷ�, ½��. �����ز�����/�ɻ��ճ������ľ���ṹ���廯ѧ�о�[J]. ����ѧ��, 1997,15(1):98-103. LEI Xin-rong, LIU Hui-fang, LU Qi. Crystal structure and crystallochemistry study on illite/smectite interstratified clay minerals in sedimentary strata[J]. Acta Sedimentologica Sinica, 1997,15(1):98-103.
[39] �ܹ���. ճ���������ģ���о�[J]. ʯ��ʵ�����, 1995,17(3):286-292. ZHOU Guo-qing. Thermal modelling research of clay minerals[J]. Petroleum Geology and Experiment, 1995,17(3):286-292.
[40] ���ڷ�. ����ճ������ת�����ɽṹ[J]. ����ѧ��, 1988, 6(1):80-88. REN Lei-fu. A tentative study on transition structure of clay minerals[J]. Acta Sedimentologica Sinica, 1988, 6(1):80-88.
[41] ���Ž�. ����ʯ����ʯ���Ŀ�������,ת�����Ƽ���ת��ģ�͵��о�����[J]. ���ʿƼ��鱨, 1994,13(4):41-47. ZHOU Zhang-jian. Summary of the studying for illitization of the smectite on its controlling factors, transformation mechanism and models[J]. Geological Science and Technology Information, 1994,13(4):41-47.
[42] Olives J. Mixed layering of illite-smectite:results from high-resolution transmission electron microscopy and lattice-energy calculations[J]. Clays & Clay Minerals, 2000, 48(2):282-289.
[43] Boles J R, Franks S J. Clay digenesis in Wilcox sandstones of southwest Texas[J]. Journal of Sedimentary Petrology, 1979, 49(1):55-70.
[44] ������. ����ʯ����ʯ�������ֳ������[J]. ��ѧǰԵ, 1994,1(����1):157. ZHANG Li-fei. Three kinds of form mechanism of montmorillonite illitization[J].Earth Science Frontier, 1994,1(Suppl. 1):157.
[45] Patrick Muffler L J, White D E. Active metamorphism of Upper Cenozoic sediments in the Salton sea geothermal field and the Salton trough, southeastern California[J]. Geological Society of America Bulletin, 1969, 80(2):157-182.
[46] Inoue A. Potassium fixation by clay minerals during hydrothermal treatment[J]. Clays & Clay Minerals, 1983, 31(2):81-91.
�������������
1��������.����������ڶ�ѷ�����ϲ������ɲ��ڴ��о�[J]. �������, 2012,31(4): 748-752

Copyright by �������