[an error occurred while processing this directive] ������� 2018, 37(1) 276-281 DOI:   10.3969/j.issn.1004-5589.2018.01.026  ISSN: 1004-5589 CN: 22-1111/P

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
��������
��չ����
������Ϣ
Supporting info
PDF(2536KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���·���
���������Ϣ
���Ĺؼ����������
����̽
��Ԫ��
��Ԫ��
��ֵģ��
���������������
��齨
������
������
����
PubMed
Article by Li H
Article by Han L
Article by Liu D
Article by Gong X
������Ԫ�㷨�ĵ���̽�߾�����Ԫ����ֵģ��
��齨1, ������2, ������1, ����2
1. �й�ʯ�ͻ����ɷ����޹�˾ʯ����̽�����о�Ժ, �Ͼ� 211103;
2. ���ִ�ѧ����̽���ѧ�뼼��ѧԺ, ���� 130026
ժҪ�� ��Ը��ӹ������̽����������ģ���㷨���ھ��Ⱥͼ���Ч�ʵ͵����⣬�����о�������˻�����Ԫ�㷨�ĸ߾�����Ԫ����ֵģ�ⷽ�������ڲ�������ǿ������ʽ���Ƶ���ά�������̵���Ԫ�ⷨ������������Ԫ�㷨�������γ�ȫ�־��󣬽����ڶ�����С��ģ��Ԫ�ṹ���м��㣬��߼���Ч�ʣ����ٴ洢�ռ����ġ�Ӧ�û�����Ԫ�㷨�ĸ߾�����Ԫ���Ը��ӽ�����ģ�ͽ�����ֵģ�⣬�ó����������㾫�ȸߡ���ֵƵɢС������Ч�ʸߡ�
�ؼ����� ����̽   ��Ԫ��   ��Ԫ��   ��ֵģ��  
High precision spectral element numerical simulation of seismic exploration based on element by element method
LI Hong-jian1, HAN Li-guo2, LIU Ding-jin1, GONG Xiang-bo2
1. Sinopec Geophysical Research Institute, Nanjing 211103, China;
2. College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China
Abstract: Aiming at solving the problem of low precision and low computation efficiency in conventional simulation algorithm of the complex structure seismic exploration, the authors propose a high precision spectral element simulation based on element by element algorithm. Based on strong and weak forms of wave equation, the authors derivate the spectral element solution process of second-order seismic wave equation, followed by calculating the separate small-scale element structure using element by element algorithm without global matrix, which improves the computational efficiency and reduces storage space consumption. Numerical simulation of a complicated orebody model proves that this method gets high precision, small numerical dispersion and high computation efficiency.
Keywords: seismic exploration   spectral element method   element by element method   numerical simulation  
�ո����� 2017-04-24 �޻����� 2017-12-15 ����淢������  
DOI: 10.3969/j.issn.1004-5589.2018.01.026
������Ŀ:

������Ȼ��ѧ������Ŀ��41204078��.

ͨѶ����: ������(1961-),��,����,��ʿ����ʦ,��Ҫ���¸��ӵ��𲨳�����������񡢵�����������������źŷ����о�.E-mail:hanliguo@jlu.edu.cn
���߼��:
����Email: hanliguo@jlu.edu.cn

�ο����ף�
[1] ��ͬ��, ������. ����˹���������̽[J]. ��̽��̽���, 1995,99(4):25-34. JI Tong-bing, XU Ming-cai. Russian ore deposit seismic prospecting[J]. Geophysical and Geochemical Exploration, 1995, 99(4):25-34.
[2] ���ƻ. ɢ�䲨������Ǿ��ȵ������Ӧ��ϵ�о�:��ʿѧλ����[D]. ����:�й����ʴ�ѧ, 2006. LI Can-ping. A study on corresponding relationship between scattering wave characteristics and heterogeneous geologic bodies:doctor's degree thesis[D]. Beijing:China University of Geosciences, 2006.
[3] ��˶, ����. �Ǿ��ȵ��Խ��ʵ��𲨳�α�׷�����ģ��[J]. �������, 2014, 33(4):934-939. PANG Shuo, LIU Cai. Inhomogeneous elastic medium seismic wave forward simulation by pseudo-spectral method[J]. Global Geology, 2014, 33(4):934-939.
[4] �ィ��. ���ӵر������µ���������ֵģ�ⷽ������[J]. �������, 2007, 26(3):345-361. SUN Jian-guo. Methods for numerical modeling of geophysical fields under complex topographical conditions:a critical review[J]. Global Geology, 2007, 26(3):345-361.
[5] �ο�ͤ. �Ǿ��Ƚ��ʻ������ݼ�������������:˶ʿѧλ����[D]. ����:���ִ�ѧ, 2010. SONG Jun-ting. Integral forward modeling of inhomogeneous medium and analysis of wave field characteristics:master's degree thesis[D]. Changchun:Jilin University, 2010.
[6] Patera A T. A spectral element method for fluid dynamics:laminar flow in a channel expansion[J]. Journal of Computational Physics, 1994, 54:468-488.
[7] Tromp J, Komatitsch D, Liu Q. Spectral-element and adjoint methods in seismology[J]. Communications in Computational Physics, 2008, 3(1):1-32.
[8] Komatitsch D, Vilotte J P. The spectral element method:an efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bulletin of the Seismological Society of America, 1998, 88(2):368-392.
[9] Komatitsch D, Vilotte J, Vai R, et al. The spectral element method for elastic wave equations-application to 2D and 3D seismic problems[J]. International Journal for Numerical Methods in Engineering, 1999, 45:1136-1164.
[10] Lee S, Komatitsch D, Huang B, et al. Effects of topography on seismic-wave propagation:an example from northern Taiwan[J]. Bulletin of the Seismological Society of America, 2009, 99(1):314-325.
[11] Lee S, Chan Y, Komatitsch D, et al. Effects of realistic surface topography on seismic ground motion in the Yangminshan region of Taiwan based upon the spectral-element method and LiDAR DTM[J]. Bulletin of the Seismological Society of America, 2009, 99(2):681-693.
[12] Komatitsch D, Erlebacher G, Goddeke D, et al. High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster[J]. Journal of Computational Physics, 2010, 229:7692-7714.
[13] Komatitsch D, Tromp J. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophysical Journal International, 1999, 139:806-822.
[14] Morency C, Tromp J. Spectral-element simulations of wave propagation in porous media[J]. Geophysical Journal International, 2008, 175:301-345.
[15] Lee S, Chen H, Liu Q, et al. Three-dimensional simulations of seismic-wave propagation in the Taipei Basin with realistic topography based upon the spectral-element method[J]. Bulletin of the Seismological Society of America, 2008, 98(1):253-264.
[16] ������, Seriani G, ��ΰ��. ������Ԫ�����㵯�Բ�����������������[J]. �й���ѧ, 2007, 37(1):41-59. WANG Xiu-ming, Seriani G, LIN Wei-jun. Using spectral element method to calculate some theory problems about elastic wave field[J]. Science in China Press, 2007, 37(1):41-59.
[17] ��ƽ, ������. ������Ԫ���ĸ�������𤵯�Խ��ʵ��𲨳�ģ��ͷ���[J]. �������, 2017, 36(1):255-265. ZHANG Ping, HAN Li-guo. Seismic wave propagation and analysis in anisotropic viscoelastic medium based on spectral element method[J]. Global Geology, 2017, 36(1):255-265.
[18] ��ͯ��, ����, ��С��. �������ͬ�Խ����е��𲨳���Ԫ����ֵģ��[J]. ��������ѧ��չ, 2007, 22(3):778-784. WANG Tong-kui, LI Rui-hua, LI Xiao-fan. Numerical spectral-element modeling for seismic wave propagation in transversely isotropic medium[J]. Progress in Geophysics, 2007, 22(3):778-784.
[19] ��ͯ��, лռ��, ������, ��. ���Խ�������Ԫ��������ʱƫ�Ʒ����о�[J]. ʯ����̽, 2009, 48(4):354-358. WANG Tong-kui, XIE Zhan-an, FU Xing-shen, et al. spectral element post-stack reverse-time migration method in elastic medium[J]. Geophysical Prospecting for Petroleum, 2009, 48(4):354-358.
�������������
1����ƽ, ������.������Ԫ���ĸ�������𤵯�Խ��ʵ��𲨳�ģ��ͷ���[J]. �������, 2017,36(1): 255-265
2�������, ���, ���, �����, ����, ��ӱ, ����.�Ͳ��� CO 2 ���ﲶ�������о�[J]. �������, 2016,35(4): 1169-1177
3�����꿭, ������, ���غ�, �±���, ����.��ά���ܶȵ����ʷ��ڵ̰ӹ����е�ģ������[J]. �������, 2016,35(4): 1133-1137
4�����, ��ͩ��, ������.�ɿ�Դ��ų���ά��ֵģ���е�ɢ��У�������о�[J]. �������, 2014,33(4): 916-924
5����˶, ����.�Ǿ��ȵ��Խ��ʵ��𲨳�α�׷�����ģ��[J]. �������, 2014,33(4): 934-939
6���γ�, ����, �����, ¹��.LNAPL �ڶ�ά��ˮ���������ƹ��ɵ��о�[J]. �������, 2014,33(3): 708-715
7����ȫ��, ������, ����.�������� ��adon �任����ˮ�����β�ѹ���е�Ӧ��[J]. �������, 2014,33(2): 484-487
8�������, ����, ������, ���ѷ�.��ͨ�Ӷ��Ѽ����ȶ�������[J]. �������, 2012,31(2): 389-398
9������,���Ѻ꣬��ǿ.���Ⱦ�U �͹���Χ�����¶ȳ���ANSYS ģ��[J]. �������, 2011,30(2): 301-306
10��Yarbana EL Houssein, ���Ѻ�, Mohammed Hazaea.����ѹ���������ʵ�Ӱ�켰������ֵģ����������ṹ�Ż����[J]. �������, 2010,29(3): 509-513
11������, ��ϣ��, ����, �糤ʢ.��ά��λ�������Խ�����ֵģ�⼰��������[J]. �������, 2010,29(1): 130-137
12���Ŷ���, �ィ��, ������,.��ά����ر�ֱ���糡��ֵ����ֵģ��[J]. �������, 2009,28(2): 242-248

Copyright by �������