世界地质 2017, 36(2) 579-587 DOI:   10.3969/j.issn.1004-5589.2017.02.024  ISSN: 1004-5589 CN: 22-1111/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
地球物理
扩展功能
本文信息
Supporting info
PDF(5806KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
双曲Radon变换
最小二乘法
参数采样
本文作者相关文章
PubMed
双曲Radon变换参数分析
邢慧婷, 刘财, 李炳秀, 刘洋, 魏忠宇
吉林大学地球探测科学与技术学院, 长春 130026
摘要

为避免双曲Radon变换在消除多次波和提取速度差异的过程中出现假频现象,对地震资料处理造成一定的影响。笔者在时间域对最小二乘双曲Radon变换中的曲率参数和最小二乘迭代次数进行了研究,计算出平衡准确度和计算量的最佳参数选取范围为,曲率参数在30~40之间,迭代次数在6~10之间。理论模型测试和实际资料处理结果表明,适当的参数选取能够在保证准确度的同时极大减小计算量,有利于双曲Radon变换的实际应用。

关键词 双曲Radon变换   最小二乘法   参数采样  
Analysis of parameters in hyperbolic Radon transform
XING Hui-ting, LIU Cai, LI Bing-xiu, LIU Yang, WEI Zhong-yu
College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China
Abstract:

In order to avoid the pseudo-frequency in the process of eliminating multiples and extracting velocity difference of hyperbolic Radon transform, which caused certain impacts on seismic data processing, the authors studied the curvature parameters and iteration numbers of least square hyperbolic Radon transform in time domain and figured out the optimum range of the parameter of 30 to 40 for curvature sampling and 6 to 10 for the iteration numbers. Synthetic model and real data tests show that proper setting of parameters could ensure the accuracy and reduce the computing time, which is beneficial for the application of hyperbolic Radon transform.

Keywords: hyperbolic Radon transform   least-squares   sampling parameters  
收稿日期 2016-11-19 修回日期 2017-02-10 网络版发布日期  
DOI: 10.3969/j.issn.1004-5589.2017.02.024
基金项目:

国家自然科学基金项目(41522404,41430322)、国家973计划项目(2013CB429805)联合资助.

通讯作者: 刘财(1963),男,博士生导师.主要从事地震波场正反演理论,地震数据处理以及结合地质、地球物理等研究.E-mail:liucai@jlu.edu.cn
作者简介:
作者Email: liucai@jlu.edu.cn

参考文献:

[1] Sacchi M D, Ulrych T J. High-resolution velocity gathers and offset space reconstruction [J].Geophysics, 1995, 60(4):1169-1177.
[2] 冯晅,张先武,刘财,等.带有多道相关的抛物线Radon变换法分离P-P、P-SV波[J].地球物理学报,2011,54(2):304-309. FENG Xuan, ZHANG Xian-wu, LIU Cai, et al. Separating coherence[J].Chinese Journal of Geophysics 2011, 54(2):304-309.
[3] 石颖,王维红.基于波动方程预测和双曲Radon变换联合压制表面多次波[J],地球物理学报,2012,55(9):3115-3125. SHI Ying, WANG Wei-hong. Surface-related multiple suppression approach by combining wave equation prediction and hyperbolic Radon transform[J].Chinese Journal of Geophysis,2012,55(9):3315-3125.
[4] 黄新武,吴律,宋炜.拉冬投影法三维叠前深度偏移[J].地球物理学报,2004, 47(2):321-326. HUANG Xin-wu, WU Lü, SONG Wei. 3D prestack depth migration with Radon, prestack[J].Chinese Journal of Geophysis, 2004,47(2):321-326.
[5] 王维红,裴江云,张剑锋.加权抛物Radon变换叠前地震数据重建[J].地球物理学报,2007,50(3):851-859. WANG Wei-hong,PEI Jiang-yun,ZHANG Jian-feng.Prestack seismic data reconstruction using weighted parabolic Radon transform[J].Chinese Journal of Geophysis,2007,50(3):851-859.
[6] Thorson J R, Claerbout J F. Velocity-stack and slant stack stochastic inversion[J].Geophysics,1985,50(12): 2727-2741.
[7] 吴律.τ-p 变换及应用[M].北京:石油工业出版社,1993:43-59. WU Lü.τ-p transform and its application[M]. Bei-jing: Petroleum Industry Press,1993:43-59.
[8] Beylkin G. Discrete Radon transform[J].IEEE Transactions on Acoustics, Speech and Signal Processing, 1987, 35(2):162-172.
[9] Kostov C. Toeplitz structure in slant-stack inversion[M]//SEG Technical Program Expanded Abstracts 1990. Society of Exploration Geophysicists, 1990: 1618-1621.
[10] Yilmaz O, Taner M T. Discrete plane-wave decomposition by least-mean square-error method[J]. Geophys, 1994, 59(6):973-982.
[11] 刘喜武,刘洪,李幼铭.高分辨率Radon变换方法及其在地震信号处理中的应用[J].地球物理学进展,2004,19(1): 8-15. LIU Xi-wu,LIU Hong,LI You-ming. High-resolution Radon transform method and its application in seismic signal processing[J].Progress in Geophysics,2004,19 (1): 8-15.
[12] 孔祥琦.基于双曲Radon变换表面多次波衰减方法研究:硕士学位论文[D].大庆:东北石油大学,2012. KONG Xiang-qi. Research on a surface multiple attenuation method of based on hyperbolic Radon transform: master's degree thesis[D].Daqing: Northeast Petroleum University,2012.
[13] Jiang X, Zheng F, Jia H, et al. Time-domain hyperbolic Radon transform for separation of PP and P-SV wavefields[J]. Studia Geophysica et Geodaetica, 2016, 60(1): 91-111.

本刊中的类似文章

Copyright by 世界地质