世界地质 2017, 36(2) 570-578 DOI:   10.3969/j.issn.1004-5589.2017.02.023  ISSN: 1004-5589 CN: 22-1111/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
地球物理
扩展功能
本文信息
Supporting info
PDF(6474KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
小波变换
二代小波变换
阈值法去噪
平移不变量去噪
本文作者相关文章
PubMed
改进阈值法在二代小波变换去噪中的应用
刘俊成1, 赵强2
1. 吉林大学地球探测科学与技术学院, 长春 130026;
2. 华北地质勘查局, 河北保定 071051
摘要

地震信号去噪能有效提高信号的信噪比和分辨率。二代小波变换可以在不同尺度上对含噪信号进行小波分解和多分辨率分析,实现窗口宽度自适应调整的局部化分析。但小波变换阈值法在去噪过程中会在信号的不连续邻域会产生伪吉布斯效应,而平移不变量阈值去噪方法通过平移-去噪-平均的思想可以很好的解决该问题。因此本文在已有的二代小波变换阈值去噪的基础上将平移不变量这一改进方法应用于二代小波变换中,实现了对地震信号更加快速有效的去噪处理,并在模拟数据试算和实际数据试算中取得了良好的去噪效果。

关键词 小波变换   二代小波变换   阈值法去噪   平移不变量去噪  
Application of improved threshold method on second-generation wavelet transform denoising
LIU Jun-cheng1, ZHAO Qiang2
1. College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China;
2. Geological Survey of North China, Baoding 071051, Hebei, China
Abstract:

Seismic signal denoising can effectively improve the signal-to-noise ratio and the resolution of the signal. The second-generation wavelet transform can denoise signal in different scales and resolutions and realize local analysis in which the window width can be adjusted adaptively. However, in the process of denoising, wavelet threshold method exhibits pseudo gibbs effect for discontinuous signal. This problem can be solved by the translation invariant threshold denoising method via translation-denoising-average. Therefore, based on the existing results on the second-generation wavelet transform and threshold denoising, translation invariant will be applied to the second-generation wavelet transform to denoise signal fast and effectively, and achieve good denoising result in the simulated data trial and real data trial.

Keywords: wavelet transform   second-generation wavelet transform   wavelet threshold method   translation invariant threshold denoising method  
收稿日期 2016-03-23 修回日期 2017-02-27 网络版发布日期  
DOI: 10.3969/j.issn.1004-5589.2017.02.023
基金项目:

国家“863”计划(2013AA063901).

通讯作者:
作者简介:
作者Email:

参考文献:

[1] 李庆忠.走向精确勘探的道路[M]. 北京:石油工业出版社, 1993:107-120. LI Qing-zhong. On the way to precise exploration[M].Beijing:Petroleum Industry Press,1993:107-120.
[2] 康冶,于承业,贾卧,等.F-X域去噪方法研究[J].石油地球物理勘探,2003,38(2):273-282. KANG Ye,YU Cheng-ye, JIA Wo, et al. Research on de-noising in F-X domain[J]. Oil Geophysical Prospecting,2003,38(2):273-282.
[3] Daubechies I. Where do wavelets come from? a personal point of view[J]. Proceedings of the IEEE, 1996, 84(4):510-513.
[4] Sweldens W. The lifting scheme: a custom-design construction of biorthogonal wavelets[J]. Applied & Computational Harmonic Analysis, 1996, 3(2):186-200.
[5] Sweldens W, Schrö P. Building your own wavelets at home[J]. Lecture Notes in Earth Sciences Berlin Springer Verlag, 1998, 90:72-107.
[6] 陈香朋, 曹思远. 第二代小波变换及其在地震信号去噪中的应用[J]. 石油物探, 2004, 2(6):70-74. CHEN Xiang-peng,CAO Si-yuan.The second generation wavelet transform and its application in seismic signal denoising[J].Petroleum Geophysical Exploration, 2004, 2(6):70-74.
[7] Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3):613-627.
[8] Coifman R R, Donoho D L. Translation-invariant de-noising[J]. Neuroimage, 1995, 103(2):125-150.
[9] 陈勇, 贺明玲, 刘焕淋,等. 利用改进阈值的平移不变量小波处理FBG传感信号[J]. 光电子·激光, 2013(2):246-252. CHEN Yong, HE Ming-ling, LIU Huan-lin, et al. Treatment of FBG sensing signal by translation invariant wavelet with an improved threshold[J].Photoelectron Laser,2013(2):246-252.
[10] 芦婧.小波变换图像去噪及其在SAR图像中的应用:硕士学位论文[D].陕西:西安科技大学.2011. LU Jing.Image denoising based on wavelet transform and its application in SAR image: master's degree thesis[D].Shanxi:Xi'an University of Science and Technology,2011.
[11] 詹毅,小波变换去噪方法研究[J].物探化探计算技术,2001,23(4):229-302. ZHAN Yi. A method of elimation noise by wavelet transform[J].Computing Techniques for Geophysical & Geochemical Exploration,2001,23(4):229-302.
[12] 马秀红, 曹继平, 董晟飞. 小波分析及其应用[J]. 计算机技术与发展, 2003, 13(8):93-94. MA Xiu-hong,CAO Ji-ping,DONG Sheng-fei.Wavelet analysis and its application[J].Computer Technology and Development, 2003, 13(8):93-94.
[13] 孙秀燕. 基于小波的图像去噪技术[J]. 科技信息, 2010(30):425-426. SUN Xiu-yan.Image denoising technology based on wavelet[J].Scientific and Technical Information,2010(30):425-426.
[14] 吴彦华,钟子发,蔡卫东.第2代小波变换算法的改进及应用[J].数据采集与处理,2005,20(3):281-285. WU Yan-hua,ZHONG Zi-fa,CAI Wei-dong.Improvement and application of second generation wavelet transform algorithm[J].Journal of Data Acquisition & Processing,2005,20(3):281-285.
[15] 胡宁杰. 小波提升格式算法及其在地震波处理中的应用[J]. 河南科技学院学报:自然科学版, 2006, 34(1):99-102. HU Ning-jie. The lifting scheme for wavelet transform and its application in earthquake wave process[J]. Journal of Henan Institute of Science & Technology,2006,34(1): 99-102.
[16] Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association, 1995, 90(432):1200-1224.
[17] Mallat S G. Multiresolution approximation and wavelet orthonormal bases of L2(R)[J]. Transactions of the American Mathematical Society, 1989, 315(1):69-87.
[18] Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1989, 11(7):674-693.
[19] 王典,刘财,刘洋,等.基于提升算法和百分位数软阈值的小波去噪技术[J].地球物理进展,2008,23(4):1124-1130. WANG Dian,LIU Cai,LIU Yang,et al.Application of wavelet transform based on lifting scheme and percentiles soft-threshold to elimation of seismic random noise[J].Progress in Geophysics,2008,23(4):1124-1130.
[20] 唐贵基, 蔡伟, 胡爱军,等. 平移不变量小波阈值去噪法在齿轮振动信号处理中的应用[J]. 噪声与振动控制, 2008, 28(6):17-19. TANG Gui-ji,CAI Wei,HU Ai-jun,et al.Application of translation invariant wavelet threshold denoising method in vibration signal processing of gears[J].Noise & Vibration Control, 2008, 28(6):17-19.
[21] 薛伟, 张健, 陈良章,等. 一种改进阈值的平移不变量雷达信号去噪方法[J]. 数据采集与处理, 2008, 23(6):668-672. XUE Wei, ZHANG Jian, CHEN Liang-zhang, et al.Translation-invariant denoising method based on improved threshold for Radar signal[J]. Journal of Data Acquisition & Processing, 2008, 23(6):668-672.
[22] 姚胜利.地震信号的小波去噪方法研究:硕士学位论文[D].长沙:中南大学,2007. YAO Sheng-li. Study on methods of noise removing by wavelet and their applications to seismic data processing: master's degree thesis[D].Changsha:Central South University,2007.
[23] 王培茂, 杨冬红, 高茹,等. 基于匹配小波包算法的地震信号去噪[J]. 世界地质, 2011, 30(2):277-281. WANG Pei-mao,YANG Dong-mei,GAO Ru,et al.Seismic signal denoising by match wavelet packet algorithm[J].Global Geology,2011, 30(2):277-281.
[24] 李红雨, 杨长保, 吴燕冈,等. 小波变换在位场资料去噪和位场分离中的应用[J]. 世界地质, 2014, 33(1):200-208. LI Hong-yu, YANG Chang-bao, WU Yan-gang, et al.Application of wavelet transform for de-noising and potential field separation in gravity and magnetic data processing[J]. Global Geology, 2014, 33(1):200-208.
[25] 徐峥伟.小波阈值特征选取与去噪研究:硕士学位论文[D].长春:吉林大学,2008. XU Zheng-wei.Research on characterictic selecting of wavelet thresholding and denoise: master's degree thesis[D].Changchun: Jilin University,2008.

本刊中的类似文章
1.杨俊生,陈世悦,袁波.辽河西部凹陷欢喜岭地区沙河街组层序界面的识别[J]. 世界地质, 2010,29(2): 314-322
2. 沈野, 蒋黎.利用地震高低频信息预测油气富集区[J]. 世界地质, 2012,31(2): 339-344
3. 赵汉卿1, 刘招君1, 2, 姚树青3, 柳蓉1, 2, 孙平昌1, 贾建亮1, 胡晓峰1.基于测井曲线的小波变换定量层序地层单元划分[J]. 世界地质, 2013,32(2): 372-378

Copyright by 世界地质