世界地质 2017, 36(2) 441-451 DOI:   10.3969/j.issn.1004-5589.2017.02.011  ISSN: 1004-5589 CN: 22-1111/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
基础地质
扩展功能
本文信息
Supporting info
PDF(6011KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
地球化学
同位素年代学
构造背景
孤山子
河北
本文作者相关文章
PubMed
冀东孤山子基性-超基性岩体锆石U-Pb年代学、岩石地球化学特征
王烨, 李碧乐, 吴琼, 王国志
吉林大学地球科学学院, 长春 130061
摘要

对孤山子基性-超基性岩体的岩相学、锆石U-Pb年代学和全岩地球化学等方面研究,确定了该岩体的形成时代、岩石成因及其形成的构造环境。该杂岩体主要由辉石岩和角闪辉石岩组成,元素地球化学上,贫SiO2(34.28%~49.22%)、K2O>Na2O、富MgO(4.54%~13.26%)特征,属碱性系列岩石。岩石稀土元素球粒陨石标准化配分模式为轻稀土富集型,(La/Yb)N=8.14~36.19,Eu异常不明显,稀土元素原始地幔标准化分布模式相似,为上地幔富集地幔熔融。岩石富集大离子亲石元素(如Rb、Ba、K)和LREE(如La和Ce),明显亏损高场强元素(Nb、Ta、Ti)和HREE。样品Nb/U、Ce/Pb和La/Sm 比值显示岩体经历了有限的地壳混染。锆石的LA-ICP-MS U-Pb年代学研究表明,岩石锆石U-Pb年龄分为3类:一类锆石U-Pb年龄为(1 392±10)Ma,应为孤山子超基性侵入体侵位过程中捕获的碎屑锆石;第二类锆石U-Pb年龄为(274.5±2.1)Ma,为岩浆侵位时形成的锆石;第三类锆石U-Pb年龄为(53.02±1.1)Ma,为热液锆石。研究认为,岩体的岩浆源区主要为亏损地幔,可能受晚古生代古亚洲洋俯冲洋壳的脱出流体迭加作用和地壳物质的混染。结合区域构造演化,认为岩体形成于古亚洲洋闭合后挤压向伸展转换的构造背景。

关键词 地球化学   同位素年代学   构造背景   孤山子   河北  
Zircon U-Pb geochronology and geochemistry of Gushanzi basic-ultrabasic rocks in eastern Hebei, China
WANG Ye, LI Bi-le, WU Qiong, WANG Guo-zhi
College of Earth Sciences, Jilin University, Changchun 130061, China
Abstract:

Based on the study of petrography, zircon U-Pb chronology and geochemical data, the authors determined the formation age, petrogenesis and tectonic setting for the basic-ultrabasic complex from Gushanzi. The complex is mainly composed of pyroxenite and hornblende pyroxenite. The geochemical analysis results show that the complex is enriched in MgO (4.54%~13.25%), low in SiO2 (34.28%~49.22%), and K2O>Na2O, which belong to alkaline series. Chondrite-normalized rare-earth element pattern shows that the rocks are enriched in light rare-earth element, the ratio of (La/Yb)N=8.14~36.19, with light Eu anomalies. These rocks are characterized by enrichment in LILE (Rb, Ba,K)and LREE(La, Ce), relatively depletion in HFSE(Nb, Ta, Ti)and HREE. The ratios of Nb/U, Ce/Pb and La/Sm indicate that the complex experienced limited crustal contamination. LA-ICP-MS U-Pb dating results of zircons from Gushanzi complex can be separated into three groups. The first group is with U-Pb age of(1 392±10)Ma, which is detrital zircons captured during the emplacement of ultrabasic intrusion. The second group is with U-Pb age of (274.5±2.1)Ma, representing the formation age of ultrabasic rocks. The third group is with U-Pb age of (53.02±1.1)Ma, which are typical hydrothermal zircons. These rocks are derived from partial melting of depleted mantle wedge modified by subduction-related fluids from the subduction of Paleo-Asian Ocean crust during Paleozoic and crustal contamination. Combined with the research of regional tectonic evolution, the authors conclude that the complex was formed after the closure of the Paleo-Asian Ocean in a tectonic setting of transition from compression to extension.

Keywords: geochemistry   isotope   chronology   tectonic setting   Gushanzi   Hebei  
收稿日期 2017-02-04 修回日期 2017-04-20 网络版发布日期  
DOI: 10.3969/j.issn.1004-5589.2017.02.011
基金项目:

柴达木周缘及邻区成矿带地质矿产调查项目(1212011086020).

通讯作者: 李碧乐(1965),男,教授,博士生导师,主要从事矿床学研究.E-mail:libl@jlu.edu.cn
作者简介:
作者Email: libl@jlu.edu.cn

参考文献:

[1] 秦克章,方同辉,王书来,等.东天山板块构造分区,演化与成矿地质背景研究[J].新疆地质,2002,20(4):302-308. QIN Ke-zhang, FANG Tong-hui, WANG Shu-lai, et al. Plate tectonics division, evolution and metallogenic settings in eastern Tianshan Mountains, NW-China [J]. Xinjiang Geology,2002,20(4):302-308.
[2] 柴凤梅,张招崇,董连慧,等.新疆中天山白石泉含铜镍矿镁铁-超镁铁岩体地球化学特征与岩石成因[J].岩石学报,2007,23(10):2366-2378. CHAI Feng-mei, ZHANG Zhao-chong, DONG Lian-hui, et al. Geochemistry and petrogenesis of the Baishiquan Cu-Ni sulfide-bearing mafic-ultramafic intrusion in the central Tianshan, Xinjiang, NW China [J].Acta Petrologica Sinica,2007,23(10):2366-2378.
[3] 钱壮志,孙涛,汤中立,等. 东天山黄山东铜镍矿床铂族元素地球化学特征及其意义[J]. 地质论评,2009, 55(6): 873-884. QIAN Zhuang-zhi, SUN Tao, TANG Zhong-li, et al. Platinum-group elements geochemistry and its significances of the Huangshandong Ni-Cu sulfide deposit, East Tianshan, China [J]. Geological Review, 2009, 55(6): 873-884.
[4] 王冠, 孙丰月, 李碧乐,等. 东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义[J]. 地学前缘, 2014, 21(6): 381-401. WANG Guan, SUN Feng-yue, LI Bi-le, et al. Petrography, zircon U-Pb geochronology and geochemistry of the mafic-ultramafic intrusion in Xiarihamu Cu-Ni deposit from East Kunlun, with implications for geodynamic setting [J]. Earth Science Frontiers, 2014, 21(6): 381-401.
[5] Zhang Z C, Mao J W, Chai F M, et al. Geochemistry of the Permian Kalatongke mafic intrusions, northern Xinjiang, Northwest China: implications for the genesis of magmatic Ni-Cu sulfide deposits[J]. Economic Geology, 2009, 104(2): 185-203.
[6] 贺文,叶会寿,胡华斌,等. 冀东孤山子超基性岩体矿物岩石地球化学及Sr-Nd-Pb同位素特征[J]. 地质学报, 2015, 89(7): 1162-1179. HE Wen, YE Hui-shou, HU Hua-bin, et al. Mineralogy, petrology, geochemistry and Sr-Nd-Pb isotope systematics characteristies of Gushanzi ultrabasic rocks in eastern Heibei Province [J].Acta Geologica Sinica, 2015, 89(7): 1162-1179.
[7] 贺文,叶会寿,陈若瑜,等. 河北省宽城县孤山子超基性岩体锆石U-Pb年龄及Hf同位素特征[J]. 岩石矿物学杂志, 2015, 34(1):65-78. HE Wen, YE Hui-shou, CHEN Ruo-yu,et al.U-Pb geochronology and Lu-Hf isotopes of zircons from Gushanzi ultrabasic rocks of Kuancheng County in Hebei Province [J].Acta Petrologica et Mineralogica,2015, 34(1): 65-78.
[8] 陈俊,孙丰月,王力,等. 胶东招掖地区滦家河花岗岩锆石U-Pb年代学、岩石地球化学及其地质意义[J]. 世界地质,2015, 34(2): 283-295. CHEN Jun, SUN Feng-yue, WANG Li, et al. Zircon U-Pb geochronology and petrogeochemistry of Luanjiahe granite in Jiaodong region and their geological significance [J]. Global Geology, 2015, 34(2): 283-295.
[9] 侯可军,李延河,田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492. HOU Ke-jun, LI Yan-he, TIAN You-rong. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS [J]. Mineral Deposits, 2009, 28(4): 481-492.
[10] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192:59-79.
[11] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Science Bulletin, 2010, 55(15): 1535-1546.
[12] Ccleman R G. Ophiolites[M].Berlin:Heidelberg, 1977:1-299.
[13] Miyashiro A. Volcanic rock series in island arcs and active continental margins [J]. American Journal of Science, 1974, 274(4): 321-355.
[14] Boynton W V. Chapter 3-cosmochemistry of the rare earth elements: meteorite studies[J]. Developments in Geochemistry, 1984, 2(2): 63-114.
[15] 冉红彦,肖森宏. 喀拉通克含矿岩体的微量元素与成岩构造环境[J]. 地球化学, 1994, 23(4): 392-401. RAN Hong-yan, XIAO Sen-hong. Trace element abundances and tectonic environment of the host intrution of calatongke Cu-Ni deposit[J]. Geochimica,1994, 23(4): 392-401.
[16] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//Sauders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, 1989, 42: 313-345.
[17] 毛景文,杨建民,韩春明,等. 东天山铜金多金属矿床成矿系统和成矿地球动力学模型[J]. 地球科学, 2002, 27(4): 413-424. MAO Jing-wen, YANG Jian-min, HAN Chun-ming, et al. Metallogenic systems of polymetallic copper and gold deposits and related metallogenic geodynamic model in eastern Tianshan, Xinjiang [J]. Earth Science, 2002, 27(4): 413-424.
[18] 彭松柏,朱家平,李志昌,等. 国外电子探针铀-钍-铅定年方法及其在构造分析中的应用前景[J]. 岩矿测试, 2004, 23(1): 44-51. PENG Song-bo, ZHU Jia-ping, LI Zhi-chang, et al. U-Th-Pb dating by electron microprobe and its application in structural analysis [J]. Rock and Mineral Analysis, 2004, 23(1): 44-51.
[19] Baker J A, Menzies M A, Thirlwall M F, et al. Petrogenesis of Quaternary intraplate volcanism, Sana'a Yenmen: implication and polybaric melt hybridization[J].Journal of Petrology,1997,38: 1359-1390.
[20] Hawkesworth C,Turner S, Peate D, et al. Elemental U and Th variations in island arc rocks: implications for U-series isotopes[J].Chemical Geology,1997,139:207-221.
[21] Mahoney J J, Coffin M F. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: chemical and isotopic constraints[C]//Large igneous provinces: continental, oceanic, and planetary flood volcanism. American Geophysical Union, 1997,100: 335-355.
[22] Green D H, Schmidt M W, Hibberson W O. Island-arc Ankaramites: primitive melts from fluxed refractory lherzolitic mantle[J]. Journal of Petrology, 2004, 45(2):391-403.
[23] Tian W, Chen B, Ireland T R, et al. Petrology and geochemistry of dunites, chromitites and mineral inclusions from the Gaositai Alaskan-type complex, North China Craton: implications for mantle source characteristics[J]. Lithos, 2011, 127(1/2):165-175.
[24] Loney R A, Himmelberg G R. Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska[J]. Geological Society of America, 1993, 25:5.
[25] Murray C G. Zoned ultramafic complexes of the Alaskan type: feeder pipes of andesitic volcanoes[J]. Memoir of the Geological Society of America, 1972, 132:313-335.

本刊中的类似文章
1. 梁树能, 李光辉, 孙景贵, 陈冬, 逄伟, 常艳.黑龙江五星铜镍、铂钯矿床镁铁质杂岩的元素地球化学特征与岩石成因[J]. 世界地质, 2009,28(1): 28-36
2. 王枫, 许文良, 李军, 裴福萍, 曹花花.吉林中部烟筒山早白垩世辉长闪长岩的年代学和地球化学[J]. 世界地质, 2009,28(4): 403-413
3. 张志斌, 黄超义, 兰晓东, 李朝阳.新疆中天山马鞍桥铅锌矿床脉状矿石成矿流体的性质[J]. 世界地质, 2009,28(2): 179-198
4. 李健, 贾大成, 白雪山, 李永占, 裴尧, 宋运红.河北张百湾中生代盖层下隐伏磁铁石英岩型铁矿床的勘查条件[J]. 世界地质, 2009,28(2): 187-192
5. 雷万杉, 张振庭, 刘亚剑, 王淼.吉林江源小石人金矿综合勘查方法研究[J]. 世界地质, 2009,28(1): 45-67
6. 徐倩, 王冬艳, 刘爽, 李月芬, 王锡魁.四平地区不同母质黑土土壤地球化学研究[J]. 世界地质, 2009,28(1): 53-59
7. 毕明丽, 路来君, 宋茂德, 袁平.新疆戛勒赛地区地球化学特征及指示意义[J]. 世界地质, 2009,28(1): 60-67
8. 李林山, 魏玉明, 孙德福.黑龙江逊克霍吉河地区地球化学找矿方法[J]. 世界地质, 2009,28(1): 68-74
9. 王旭辉, 陆继龙, 王连和, 郝立波, 蒋艳明, 赵玉岩.区域地球化学样品分析质量控制系统关键模块的实现方法[J]. 世界地质, 2009,28(1): 139-142
10. 李丽, 杨永强, 王育习.甘肃北山地区怪石山含铜镍矿化镁铁质-超镁铁质杂岩体的地球化学特征及成因机制[J]. 世界地质, 2010,29(1): 16-27
11.施宪,王冬艳,李月芬,靳克,郭珍.吉林西部锰、钼元素土壤地球化学特征[J]. 世界地质, 2010,29(2): 256-261
12. 唐忠, 叶松青, 杨言辰.黑龙江逊克高松山金矿成因模式[J]. 世界地质, 2010,29(3): 400-407
13. 刘莉, 杨言辰, 杨兆武, 韩世炯.黑龙江穆棱砍椽沟钼铜矿床地质与地球化学特征[J]. 世界地质, 2010,29(3): 413-418
14. 宿晓静, 卿敏, 王可勇, 王艳忠, 张景海, 程军.黑龙江金厂金矿床J0 号矿体地球化学特征及其找矿[J]. 世界地质, 2011,30(1): 28-33
15.杨乃峰,高波,赵玉林,孙珍军,李超.小兴安岭二龙山林场堆晶辉长岩地球化学特征及构造环境[J]. 世界地质, 0,(): 180-185

Copyright by 世界地质